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Towards enhanced stability of human stance with a
supernumerary robotic tail

Sajeeva Abeywardena1 and Ildar Farkhatdinov2,3 .

Abstract—Neural control is paramount in maintaining upright
stance of a human; however, the associated time delay affects
stability. In the design and control of wearable robots to augment
human stance, the neural delay dynamics are often overly
simplified or ignored leading to over specified systems. In this
letter, the neural delay dynamics of human stance are modelled
and embedded in the control of a supernumerary robotic tail to
augment human balance. The actuation, geometric and inertial
parameters of the tail are examined. Through simulations it was
shown that by incorporating the delay dynamics, the tail specifi-
cation can be greatly reduced. Further, it is shown that robustness
of stance is significantly enhanced with a supernumerary tail and
that there is positive impact on muscle fatigue.

Index Terms—Wearable Robotics; Human Performance Aug-
mentation; Physical Human-Robot Interaction

I. INTRODUCTION

Human stance has a narrow range of stability due to
the location of the centre of mass (CoM) with respect to
the relatively small base of support (BoS) provided by the
feet. With the mechanical torque created by extensor-flexor
muscles in lower limbs found to be below that of the critical
stiffness required to overcome gravitational instability; it is
well accepted that a neural control element based on vestibular,
visual and somatic function accounts for the remaining balance
control to maintain upright stance [1]–[3]. However, there
is an inherent delay associated with neural control function.
Coupled with muscle fatigue, external disturbances and a
small base of support; a loss of balance can thus be readily
encountered by humans in every day scenarios.

Recent statistics have shown that there are over 684 000
fall related deaths and a further 172 million falls that result in
either short or long term disability a year, with those at great-
est risk being industrial workers and the ageing population
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[4]. Enhanced preventative measures to mitigate fall related
injuries beyond safe working protocols and targeted training
regimes are thus paramount, with robotic intervention being
an attractive avenue. Wearable lower limb exoskeletons have
been shown to be effective in balance assistance of the general
population [5]–[7]. Due to being attached in parallel with the
limbs of the wearer; exoskeletons share the same kinematic
properties as the assisted limb but the added mass and footprint
can hinder the natural motion capabilities.

Supernumerary robotic limbs are an extension of the natural
limbs of a human; hence, they have key characteristics to
facilitate augmentation of human balance. In this regard,
previous works of supernumerary limbs for balance assistance
have focussed on extra robotic legs to increase the BoS
during walking gait [8]–[10], increasing comfort and posture
in near-ground work [11], and for bracing in assembly and
overhead tasks to increase the support polygon and reduce
muscular loads [12], [13]. Increasing the BoS improves the
stability of balance as force is distributed through the ground
via more contact points. However, this comes at the cost of
increasing the overall footprint of the human which could be
an issue due to environmental workspace constraints. Posterior
mounted systems such as wearable control moment gyroscopes
[14] and supernumerary robotic tails (SRTs) [15] augment
balance without increasing BoS. However, these systems add
a significant 10-16 kg of mass and inertia to the human body.

The design of wearable robots to augment human perfor-
mance must carefully consider biomechanical implications and
the inherent capabilities of human control. An extra 10 kg
at the pelvis can be detrimental to natural human motion
[16]; thus minimising mass and inertia in wearable robot
design is paramount. However, conflicts arise between desired
characteristics and the actual required actuation, geometric and
inertial parameters to achieve the specified task. In the realm
of balance augmentation, one cause of these issues arises in
modelling; namely, simplification or neglect of the neurome-
chanical delay in design and control due to complexity in
the associated mathematics. This leads to systems with over-
specified characteristics. Coupled to this is a recent study
showing that reactive torques of exoskeletons that augment
upright stance need to act faster than human physiology [7].
Efforts to increase response times and power of actuators could
achieve this; however, this invariably yields increased reaction
torques that are detrimentally applied to the human body.
Hence, assistive torques of wearable robots should be informed
by predictive estimates of future human state dynamics which
depend on mechanical and neural factors.

In this letter; the actuator, geometric and inertial parameters
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required for a two-degrees-of-freedom (dof) revolute robotic
tail to augment human balance with neural delay dynamics
incorporated is examined. The organisation is as follows;
pertinent background is provided in Section II, the control
framework presented in Section III, simulation results dis-
cussed in Section IV and the major outcomes for physical
human-robot interaction (pHRI) highlighted in Section V.

II. BACKGROUND

A. System Description

A two-dof tail with revolute joints and serial structure
mounted at the height of a wearer’s CoM is proposed to
augment human balance; where the structure and parameters
are illustrated in Fig. 1. Joint variables q1, q2 and q3 and frames
are assigned to represent the angle of the passive ankle and
two active tail joints respectively. The segments of the tail
have link mass distributed at their respective midpoints, i.e.
Ii = 1

12mili
2, with the mass distribution that allows for the

tail CoM to be near q3 obeying

mi =
ljmt

li + lj
mj =

limt

li + lj
(1)

for (i, j) = (t1, t2).

Fig. 1: A supernumerary tail aims to prevent a user from falling
when their CoM exceeds the BoS (⊗ represent CoMs)

B. Theoretical Model

The dynamic model of the human-tail system in terms of
nq generalised joint co-ordinates q is

q̈ = M (q) (−C (q, q̇) q̇− g (q) + Su+ up) (2)

where M and C are the nq × nq generalised inertia and cen-
tripetal/Coriolis matrices respectively; g (nq × 1), u (m× 1)
and up (nq × 1) vectors of generalised gravity forces, active
and passive inputs; and S an nq ×m matrix that selects how
the m inputs actively alter the nq joints motion.

Equation (2) is a set of non-linear second-order ordinary
differential equations (ODEs). These can be transformed into
a system of first order ODEs by defining the state vector x =[
qT , q̇T

]T
. Due to the non-linearity of the system, control

design can be complex. However, if only a sub-workspace is of
operational interest (i.e. upright human stance), the dynamics

Fig. 2: The intermittent control surfaces of Eq. (4)

can be linearised about a stationary point (x̄, ū); allowing for
concepts of linear control theory to be applied. As such, the
linearised dynamics can be expressed as the system of first
order linear ODEs,

ẋ(t) = Ax(t) +Bu(t) (3)

where A is the n × n state matrix and B the n × m input
matrix; n = 2nq and m is the number of active inputs.

C. Human Control Inputs

The single inverted pendulum (SIP) model accurately rep-
resents human stance, with the ankle being the rotational joint
[3]. As is well known, the SIP is inherently unstable. For
balance, mechanical stiffness at the ankle created by flexor-
extensor muscles is insufficient to counteract gravitational in-
stability with delayed neural control providing complementary
stabilisation [1]–[3]. Utilising power spectral density analysis
of biological sway showed that an intermittent switching
controller bests represents the physiology of human neural
control stabilisation of upright posture [2]. The fixed point
associated with the dynamical equation of the SIP is a saddle
point, i.e. the solution to Eq. (2) = 0 and related to the upright
equilibrium. This corresponds to a point that can be attracted
to a stable or unstable manifold dependent on the flow of
the vector field determined by the relationship of angle q1
and velocity q̇1. As such, in [2], the intermittent switching
surface in the q1 − q̇1 plane was defined by the vertical q̇1
axis and a line with negative slope a through the origin as
illustrated in Fig. 2. This divides the plane into quadrants
where delayed neural control is switched on when the flow is
naturally tending towards the unstable manifold to attract it to
the stable manifold; and mechanical ankle stiffness suffices for
stabilisation when the flow is naturally in the stable manifold
(neural off). Mathematically, this is

up =

{
Neural On: u1 + u1τ if q1τ (q̇1τ − aq1τ ) > 0

Neural Off: u1 otherwise
(4)

u1 = −kpq1 − kv q̇1 (5)
u1τ = −κpq1τ − κv q̇1τ (6)

where u1 is an impedance model of the ankle joint, u1τ is the
delayed neural control input, q1τ = q1 (t− τ) is the delayed
generalised coordinate with time delay τ and a ≤ 0.

D. Delay Differential Equations

Given that the passive inputs up are expressed in terms of
the states of the ankle joint, their contribution can be absorbed
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into the state matrix A. For the case of the neural controller
being switched off, the dynamics abide by the system equation
(3). However, with the neural controller on, the associated
time delay changes the governing state equation into a delay
differential equation (DDE) of form

ẋ(t) = Ax(t) +Aτxτ (t) +Bu(t) (7)
x(t) = ϕ(t) − τ ≤ t ≤ 0

where Aτ is the n× n state delay matrix, xτ (t) = x (t− τ)
the delayed state vector and ϕ(t) the initial condition over the
previous delay period. As a consequence, the characteristic
equation of the system is the quasi-polynomial

s1−A−Aτ exp (−sτ) = 0 (8)

which has infinite poles, complicating analysis.
Due to the infinite dimensional nature of Eq. (7), standard

solution methodologies of ODEs are not directly applicable.
Nevertheless, it is attractive to attempt a conversion of a DDE
into an ODE to utilise well developed analysis techniques.
In [2], a Taylor series approximation was utilised to convert
the delayed terms to finite dimension. However, there is no
mathematical basis to such an approximation as it poorly
encapsulates the infinite poles of systems with large time delay
such as human balance [17]. Spectral time approximations
(STA) utilise an irregular grid to characterise an infinite
dimensional system [18]. Corresponding to the extremes of
the Chebyshev polynomial of the first kind with degree N,
Chebyshev collocation points are unevenly spaced on the
domain [−1, 1] i.e.

tj = cos

(
jπ

N

)
j = 0, 1, . . . N (9)

Given that there are k = N + 1 collocation points defined
by Eq. (9), the spectral differencing matrix D is of dimension
k × k. Indexing the rows and columns of D from 0 to N ,

D00 =
2N2 + 1

6
DNN = −2N2 + 1

6

Djj =
−tj

2
(
1− tj

2
) j = 1 . . . N − 1

Dij =
ci (−1)

i+j

ci (ti − tj)
i ̸= j, i, j = 0 . . . N (10)

ci =

{
2 for i = 0, N

1 otherwise

Equation (10) is the differentiation operator for one DDE.
For n DDEs, the kn× kn spectral differentiation operator is

D = D⊗ 1n (11)

where 1n is the n × n identity matrix and ⊗ denotes the
Kronecker product.

Having defined the differentiation operator D, a spectral
time approximation to Eq. (7) can be made. Let

z(t) =

z1(t)...
zk(t)

 =

 x(t)
...

x(t− τ)

 =

x(t0)
...

x(tN )



where zi is the n×1 state vector at time tj (given by Eq. (9))
and z is the kn× 1 state vector in the period [0, τ ]. Then the
finite approximation of the DDE (7) is

ż(t) =

[
A 0n×(k−2)n Aτ
2
τD (n+ 1 : kn, :)

]
z(t) +

[
B

0(k−1)n×m

]
u(t)

ż(t) = Ãz(t) + B̃u(t) (12)

where Ã is the Chebyshev spectral state matrix in which
the first n rows of D are replaced by the state equation at
the current instance, B̃ is the kn × m input matrix, 0 are
appropriately dimensioned zero matrices and 2

τ scales the
collocation points into the interval [0, τ ]. Equation (12) is
in the form of Eq. (3); hence, techniques of finite ODEs
and linear control can be applied. Further, without loss of
generality, x = z for the remainder of this letter.

III. CONTROL DEVELOPMENT

The development of control laws for multi-input, multi-
output (MIMO) systems in the form of Eq. (3) are well
developed, including pole placement and optimal control. For
STA systems of Eq. (12) which are in the same structure as
Eq. (3), kn poles spectrally approximate the infinite dimen-
sional system; a number which is too large to intuitively select
using pole placement. As such, optimal control techniques are
best suited for the MIMO STA systems encountered in this
letter. The cost function for optimisation is defined as

J =

∫ Tp

0

x(t)TQx(t) + u(t)TRu(t)dt (13)

where Tp is the prediction horizon, with Q and R weighting
matrices on the states and inputs respectively.

Model predictive control (MPC) determines an optimal
trajectory of the control input using predictions of the future
dynamics of the system with constraints on inputs, outputs and
states. This is well suited to the requirements of this study,
where actuation limits and constraints on the range of motion
are to be enforced. As MPC theory is well developed, the
interested reader is directed to Chapters 5-8 of [19] for details
on the MPC formulation used in this work.

A. Virtual Constraints
Using MPC to formulate the control; constraints on input,

output and state variables can be applied. However, soft
constraints on the state and output constraints are employed to
prevent conflicts in optimisation. For a supernumerary robotic
tail, limits on input levels and tail motion are equally important
to facilitate safe pHRI. As such, virtual (rather than soft)
constraints formulated via repulsive potential fields are used
to prevent collisions of the tail with the human body. Namely,
an inverse distance potential field in joint space with damping
added on the associated joint’s velocity to soften the impact
of the repulsive force and maintain stable motion, i.e.

ur,i = −biq̇i +

K∑
j=1

µj

(qi − q̂j)3
(14)

where bi is a damping coefficient for joint i, µj and q̂j are
respectively constants representing the strength and boundary
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of the j-th potential field acting on joint qi. The total repulsive
torque is added directly to the input calculated via MPC for
each of the active joints.

B. Stability

Due to the intermittent switching nature of human stance,
the control law of the active tail will switch. Whilst stable
control laws can be developed using MPC for both the ODE
and STA dynamics independently, this does not guarantee
that stability is maintained between switching. Further, the
presence of constraints on the control input and motion of
the tail can also have a consequence on the overall stability of
the system. In [2], a Poincare section based on the switching
function of Eq. (4) was defined and a Poincare map used to
assess stability of quiet stance based on a range of neural
control parameters (κp, κv). The Poincare map considers only
a section of flow, and if the map converges to the same point
with time it is consider to be stable.

Lyapunov exponents consider the trajectory of infinitesi-
mally close hyperspheres in the phase space of the dynamics.
Traditionally utilised to determine chaotic attractors, n Lya-
punov exponents exist for a n-dimensional vector field, with
the largest quantitatively assessing the convergence/divergence
of the system. It is defined as

λ = lim
t→∞

1

t
ln
(
∥δx(t)∥
∥δx(0)∥

)
(15)

where δx(t) represents the trajectory of the hypersphere. If
the largest Lyapunov exponent λ > 0, the system is unstable.

Calculation of the Lyapunov exponent can be conducted us-
ing analytic equations in terms of states of the flow, i.e. Eq. (2),
(3), (7) or (12), in conjunction with the variational equation.
However, the intermittent switching control and constraints
cause discontinuities in flow; hence, calculating Eq. (15)
using analytic methods is further complicated. Nevertheless,
Wolf’s algorithm [20] allows for the Lyapunov exponent to be
calculated from a time series and is utilised to quantitatively
assess the stability of the human-supernumerary tail systems
considered in this letter.

IV. SIMULATION

A simulation study was conducted to assess the joint actua-
tion, inertial and geometric characteristics of a supernumerary
robotic tail to augment human balance. A human of height
1.8 m, CoM h located 0.997 m directly above the ankle
joint, mass m of 82.2 kg and inertia of 12.92 kg-m2 was
simulated [21]. In line with the study of [2], ankle mechanical
stiffness was set as kp = 0.8mgh Nm and kv = 4 Nm/s
with respect to Eq. (5) (i.e. the ankle muscles compensates
80% of gravitational torque); and neural control parameters of
Eq. (6) ranged from 0 to 0.8mgh for κp and 0 to 60 Nm/s
for κv . The tail was mounted at the CoM of the human and
0.1 m posterior to the trunk as illustrated in Fig. 1. Three
cases of tail mass and geometric parameters were considered,
as tabulated in Table I, with the system linearised about
the stationary point [q1, q2, q3] = [0, 150,−20]◦. In [2], an
initial angle value of q1 = 0.57◦ was utilised. This correlates
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Fig. 3: The baseline torque profiles for q2 and q3 with no
neural control (κp = 0, κv = 0) and Case I parameters
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Fig. 4: Lyapunov exponent of quiet standing without assistance
from a supernumerary tail

to experimental measurements of physiological human sway
to maintain quiet stance. In this work, initial conditions of
x0 = [6◦, 0, 0, 0, 0, 0]T about the stationary point and the
delay history of 0 was used, i.e. a disturbance 10 times larger
than that of maintained postural sway which pushes the CoM
towards exceeding the BoS and potential to topple forward.

TABLE I: The inertial-geometric parameter cases considered
in this study which respect Eq. (1).

Case mt1 [kg] lt1 [m] mt2 [kg] lt2 [m]

I 3.33 0.6 6.67 0.3
II 1.67 0.6 3.33 0.3
III 0.83 0.6 1.67 0.3
IV 0.83 0.3 1.67 0.15

The STA model of Eq. (12) with a Chebyshev polynomial
of degree N = 10 was used to approximate the infinite di-
mensional DDE. As 6 states represented the finite dimensional
system of Eq. (3), the spectral approximation had dimension
66. The DDE required time history up to τ seconds; hence,
the neural off control model, was also represented by a 66
dimensional system—with Aτ = 06×6 in Eq. (12)—to allow
continuity of the delayed state approximation. MPC laws were
designed using the notion of prescribed stability described in
Chapter 8 of [19]. In particular, the poles were set to lie to
the left of the s = −0.8 line, prescribing the dominant poles
to have a settling time of 5 s. Q in Eq. (13) was set to only
apply on the current system states for both the ODE and DDE
controllers, with weights of 1000 (ODE) and 50 (DDE) used,
and R = 12 for both.

As a baseline for comparison, the torque required to aug-
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ment balance for Case I in Table I without neural control (i.e.
(κp, κv) = (0, 0)) or constraints was simulated and shown
in Fig. 3. From this figure, around 67 Nm and 14 Nm of
torque are required at the first and second joints of the tail
respectively to return the human to upright posture. Using
this, joint actuation limits of the tail was set as ±30 Nm
for the simulations that consider delay dynamics. Repulsive
potential fields to prevent the tail interfering with the posterior
of the human were defined by Eq. (14); with boundaries
set at 0 and 180◦ to the body for both q2 and q3. The
fields had strengths µj =

(
π

180

)3
, and damping gains of

0.5 and 0.05 Nm/s for q̇2 and q̇3 were respectively used,
with these values manually tuned to ensure stable motion
for Case I parameters at normalised κp = 0.3, 0.6, 0.8 and
κv = 30 Nm/s; and maintained throughout. Conservatively,
the potential fields became active at 20◦ and 160◦.

A. Stability

An intermittent switching parameter of a = -0.4 was used
with the time delay of the neural controller set at τ = 0.2
s which is considered ‘challenging’ [2], [3]. The Lyapunov
exponent was calculated for unassisted quiet standing and
shown in Fig. 4. The distribution of λ in this figure matches
well with that provided in [2] which utilised Poincare mapping,
validating the use of the Lyapunov exponent as a quantitative
stability indicator in this letter. In particular, it can be seen
that the most stable region (i.e. most negative λ) is in the
normalised κp = 0.5-0.6 range and as this value heads in
either direction, the flow has greater propensity to cross
into the unstable region as λ approaches 0. Further, as the
mechanical stiffness compensates 80% of gravitational torque,
a normalised κp of more than 0.2 is required for the neural
controller to provide stabilisation of upright stance.

The four cases of inertial and geometric tail parameters
tabulated in Table I were simulated for all combinations of
neural control parameters κp and κv stated previously. Figure 5
shows the Lyapunov exponent and maximum required torques
for the two joints of the tail; with Case I-IV shown from
top to bottom. Examining the Lyapunov exponent in the
first column of Fig. 5 and comparing with Fig. 4; evidently
a supernumerary tail greatly increases the stability region
of neural control parameters. That is, with a tail, even if
neural control is diminished (κp ≤ 0.2) upright pose can be
maintained. Further, the most negative λ (i.e. green region)
for unassisted standing is spread throughout with the use of
a robotic tail. This indicates, hypothetically, that with a tail
less strain could be placed on the neural controller as smaller
neural proportional gain κp is required to attain comparable
‘optimal stability’ of unassisted stance. Within the cases, Case
II provides the greatest range of neural control parameters
with Case IV (lightest and shortest) providing the smallest but
larger than unassisted. Further, Case I (heaviest) and Case IV
(lightest and shortest) have similar range; indicating a trade off
between mass and length of the tail is required in design and
importantly that the heaviest solution is not the most optimal.
Hence, it is ascertained that a supernumerary tail improves the
robustness of quiet stance.

B. Torque

The required maximum tail torques to augment balance are
illustrated in columns 2 (q2) and 3 (q3) of Fig. 5. Seemingly,
when normalised κp is in the 0.4-0.6 range, the torques attain
their minimums. Further, Case I (heaviest) has the greatest
torque requirements for both joints. Similarly, as normalised
κp ≥ 0.6, the maximum torque requirements for q2 increase
(particularly for Case III and IV). This can be attributed to
there being added proportional neural gain in the system,
hence the unassisted response is more oscillatory. As a result,
larger torque and velocity of the tail potentially results to
counteract oscillations and achieve quiet stance. However,
this could lead to the tail violating safety constraints with
the virtual constraints engaged to push the tail towards a
safe region, increasing the required torque. Such phenomena
explains interior missing points in Fig. 5 which could be
attained by fine tuning potential field parameters.

Similarly, for Case I-III, as normalised κp ≤ 0.2, the torque
requirements increase. In this situation, proportional neural
control is lacking and added torque is required from the tail
to attain upright posture. Contrarily, the torque requirements
for the second tail joint q3 is fairly consistent throughout the
parameter space for all cases, between 1-8 Nm. Hence, this
knowledge can be utilised in the design of a supernumerary
tail as the second tail joint has lower actuation requirements
than the first. It should be noted that these values are the
required torques at the joints, not from an actuator and it
is envisaged that a suitable transmission can be designed
to achieve the specification. Nevertheless—through modelling
the human’s inherent neural delay dynamics and irrespective
of parameters in Table I—human balance augmentation with
a supernumerary tail can be achieved with significantly less
torque than the 67 Nm for the baseline case of Fig. 3. This
overall leads to a simpler design and safer pHRI.

C. Range of Motion

The range of motion (RoM) of the joints is a metric of
interest for use of a robotic tail. The RoM of the three joints
for all combinations of κp and κv are shown in Fig. 6. It can
be seen that the RoM of the ankle joint is consistent between
all four inertial-geometric parameter combinations, around 7◦,
indicating that there is a slight overshoot in the response of
the ankle before upright stance is achieved. This is expected
as the initial disturbance will cause the velocity of the ankle
to move in the direction of gravitational instability before the
neural control and robotic tail provide stabilisation. For the
tail joints, the normalised κp range of 0.4-0.6 has a similar
and smallest amount of RoM in q2 which correlates with the
joint torque minimisation discussed previously. Hence, it is
ascertained that in this region there is symbiotic control action
between the neural controller and the tail, i.e. it is the most
optimal region. As proportional neural control drops, the RoM
of q2 increases. Given that the stationary point of this joint is
150◦ and close to a virtual constraint, this indicates a swing
backwards to create sufficient momentum to augment balance
as κp gets smaller. Case I, however, has a RoM of q2 that is
consistent; hence, the extra mass primarily augments balance.
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Fig. 5: Comparison of the stability via maximum Lyapunov exponent and joint torque requirements for the four inertial-
geometric cases in Table I (Top-bottom: Case I—IV) and range of neural control parameters (κp, κv)

Within Cases II-IV, Case II (5 kg, 0.9 m) utilises the smallest
joint RoM and Case III (2.5 kg, 0.45 m) the greatest. This
is particularly evident when investigating the RoM of q3 for
Case III which corresponds to the largest amount of motion.
The increase in RoM can be explained through the notion of
coupling inertia (off diagonal terms in M of Eq. (2) that are
defined by mass, length and RoM of tail segments) which is
critical in creating a reactive torque to augment balance against
gravity [22]. Case IV corresponds to the lightest and shortest
total tail length considered. As such, the coupling inertia due
to mass and length is reduced when compared with the other
tails. Further, the added mass in Case I means it has the highest
amount of inertia in the tail, hence why it has the smallest
RoM. Thus, Case IV utilises larger motion in q3 to augment
balance in the presence of smaller structural inertia. Hence,
in supernumerary tail design, coupling inertia is paramount;
requiring a balance between mass, length and joint RoM.

D. Time Response

The time response of the joints for the three considered
cases in Table I along with the unassisted case are shown in
Fig. 7. Three κp levels were considered; 0.3, 0.5 and 0.8
with κv fixed at 24 Nm/s. For all levels of κp, upright stance
is achieved in the desired 5 s, with intermittent switching
noticeable from the profiles. Comparing to the unassisted case,
this is a great improvement for κp = 0.3 and 0.8. As can be
seen, for κp = 0.3 the response is sluggish and potentially over-

damped whilst for κp = 0.8 the ankle profile is highly oscilla-
tory and significantly under-damped, potentially indicative of
neurological conditions that induce tremors. For κp = 0.5, there
is no discernible difference between the response with and
without tail, matching with the notion that in this region the
neural controller and tail act symbiotically. These results match
with the Lyapunov exponent distributions in Fig. 5 compared
to Fig. 4; that is, the more negative λ associated with more
stable flow is indicative of quicker response to upright pose
with a tail. Further, the response of the tail joints matches with
the RoM in Fig. 6. Of particular note is the extra motion of
q3 in Case IV for κp = 0.5. This is potentially due to smaller
RoM of q2 and compensating lower structural inertia.

The passive mechanical ankle torque is also illustrated in
Fig. 7. For κp = 0.3 and 0.8, the tail responses settle much
quicker than unassisted. As the initial ankle torque is the same
for all cases, this will result in less ankle energy expenditure
with a tail. However, the caveat is Case I (10 kg tail) for
κp = 0.3, 0.5 which has the longest rise time and overshoot,
i.e. slowest initial rate of change. Thus, there is an initial
increase in ankle torque and overall energy use compared to
the lighter tails that achieve quicker response. However, Case
I has similar response to these tails when κp = 0.8, i.e. the
added inertia is beneficial in damping the natural oscillations.
Hence, a supernumerary tail enhances stability of stance from
a neural perspective and has potential to reduce muscle fatigue.
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Fig. 6: The range of motion of the ankle and tail joints required to provide stable balance augmentation for the four inertial-
geometric cases in Table I (Top-bottom: Case I—IV) and range of neural control parameters (κp, κv)
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Fig. 7: Time response with and without tail (videos available as supplemental material). The ankle and tail joint angles are
shown in rows 1-3 and ankle mechanical torque in row 4 for various (κp, κv). Tail parameters are as tabulated in Table I.
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V. CONCLUSION AND FUTURE WORK

Evidentially, this letter has shown the promising characteris-
tics that a two-dof supernumerary tail can have on enhancing
human stance. The inertial and geometric characteristics of
the tail very much depend on the level of assistance required
for the potential application; in a warehouse situation where
a tail could be used as a counter balance in load handling
and minimise added postural sway, assuming a wearer has no
underlying issues affecting maintaining stance, a lighter and
shorter tail may suffice to reduce neural control requirements.
That is, the results show a tail has the ability to maintain
stance in a stable and quick fashion with lower neural/mental
requirements compared to unassisted. Subsequently, this could
improve mental alertness and improve daily productivity. If
there are underlying neurological issues of the wearer, a
heavier and/or longer tail would be more beneficial to increase
the coupling inertia; however, this comes at the potential cost
of added actuation requirements to augment stance in a timely
manner.

The notion of measuring and augmenting neural control
function is difficult to quantify. Overall stability of stance
could be evaluated by intermittently calculating the Lyapunov
exponent related to measured ankle states and used as an
adaptive control indicator in conjunction with Fig. 4. Further,
long term plasticity effects would need to be assessed to
examine if the use of a supernumerary tail has an effect on the
neural level of control as hypothesised above. In particular, if a
potential wearer develops an over reliance on the augmentation
assistance from a tail and struggles to adjust to standing
without.

Supernumerary robotic tails are still in their infancy, with
this work determining if such technology is useful for human
stance. Compared with existing augmentation and support
technology such as exoskeletons and portable harnesses, su-
pernumerary tails do not directly interfere with the natural
joints and limbs; however, a concerted user study comparison
is required. Further, the impact on the lumbar spine and other
areas must also be examined in the future. Added investigation
into incorporating the extra limbs into every day motion such
a sitting, bending and lifting is still required. The impact
on locomotion with a tail is pertinent; particularly how to
synchronise the added appendage with the periodicity of stable
bipedal gait. However, this requires the current SIP model of
stance to be expanded into non-linear multi-dof models appro-
priate for locomotion, bending and sitting with delayed neural
control embedded. Nevertheless, this letter showed that the use
of mathematical modelling techniques of neural-mechanical
control of a human leads to a reduction in the requirements of
actuator, geometric and inertial parameters for wearable robot
design. For the field of pHRI this is significant as it allows for
the development of correctly specified wearable robots, and
potential minimisation of disturbances to the human body.
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